Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02
نویسندگان
چکیده
Silver nanoparticles (Ag NPs) previously classified as antimicrobial agents have been widely used in consumers and industrial products, especially food storage material. Ag NPs used as antimicrobial agents may be found in liver. Thus, examination of the ability of Ag NPs to penetrate the liver is warranted. The aim of the study was to determine the optimal viability assay for using with Ag NPs in order to assess their toxicity to liver cells. For toxicity evaluations, cellular morphology, mitochondrial function (3-(4, 5-dimethylazol-2-yl)-2, 5diphenyl-tetrazolium bromide, MTT assay), membrane leakage of lactate dehydrogenase (lactate dehydrogenase, LDH release assay), Oxidative stress markers (malonaldehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)), DNA damage (single cell gel eletrophoresis, SCGE assay), and protein damage were assessed under control and exposed conditions (24 h of exposure).The results showed that mitochondrial function decreased significantly in cells exposed to Ag NPs at 25 μg·mL -1 . LDH leakage significantly increased in cells exposed to Ag NPs (≥ 25 μg mL -1 ) while micro-sized silver particles tested displayed LDH leakage only at higher doses (100 μg·mL -1 ). The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape. Due to toxicity of silver, further study conducted with reference to its oxidative stress. The results exhibited significant depletion of GSH level, increase in SOD levels and lead to lipid peroxidation, which suggested that cytotoxicity of Ag NPs in liver cells might be mediated through oxidative stress. The results demonstrates that Ag NPs lead to cellular morphological modifications, LDH leakage, mitochondrial dysfunction, and cause increased generation of ROS, depletion of GSH, lipid peroxidation, oxidative DNA damage and protein damage. Though the exact mechanism behind Ag NPs toxicity is suggested oxidative stress and lipid peroxidation playing an important role in Ag NPs elicited cell membrane disruption, DNA damage, protein damage and subsequent cell death. Our preliminary data suggest that oxidative stress might contribute to Ag NPs cytotoxicity. To reveal whether apoptosis involved in Ag NPs toxicity, further studies are underway. Nanosafe2010: International Conference on Safe Production and Use of Nanomaterials IOP Publishing Journal of Physics: Conference Series 304 (2011) 012036 doi:10.1088/1742-6596/304/1/012036 Published under licence by IOP Publishing Ltd 1
منابع مشابه
P-14: Effects of Gamma–Ray and Silver Nano Particles on Treatment of Human Prostate Cancer Cell line DU145
Background Prostate cancer is the second most common cancers in the world which causing harms and waste cost. Furthermore more prostate treatments are in effective and lead to male infertility. Purpose of this study was to evaluate the role gamma radiation with silver nano particles in treatment of human prostate cancer cell line in vitro. MaterialsAndMethods Human prostate cancer cell line DU1...
متن کاملToxicity Effect of Silver Nanoparticles on Mice Liver Primary Cell Culture and HepG2 Cell Line
Nano-silver (AgNP) has biological properties which are significant for consumer products, food technology, textiles and medical applications (e.g. wound care products, implantable medical devices, in diagnosis, drug delivery, and imaging). For their antibacterial activity, silver nanoparticles are largely used in various commercially available products. Thus, the use of nano-silver is becoming ...
متن کاملToxicity Effect of Silver Nanoparticles on Mice Liver Primary Cell Culture and HepG2 Cell Line
Nano-silver (AgNP) has biological properties which are significant for consumer products, food technology, textiles and medical applications (e.g. wound care products, implantable medical devices, in diagnosis, drug delivery, and imaging). For their antibacterial activity, silver nanoparticles are largely used in various commercially available products. Thus, the use of nano-silver is becoming ...
متن کاملIn vitro effect of Nanosilver toxicity on fibroblast and mesenchymal stem cell lines
Nanotechnology presents countless opportunities to develop new and improved consumer products for the benefit of the society . A most prominent nanoproduct is nanosilver. Nanosilver particles are generally smaller than 100 nm and contain 20–15,000 silver atoms. Despite the wide application of nanomaterials, there is a serious lack of information concerning their impact on human health. In the ...
متن کاملEffects of serum on cytotoxicity of nano- and micro-sized ZnO particles
Although an increasing number of in vitro studies are being published regarding the cytotoxicity of nanomaterials, the components of the media for toxicity assays have often varied according to the needs of the scientists. Our aim for this study was to evaluate the influence of serum-in this case, fetal bovine serum-in a cell culture medium on the toxicity of nano-sized (50-70 nm) and micro-siz...
متن کامل